Mitsubishi Electric hit with suspension for bill padding

The Yomiuri Shimbun

The Defense Ministry and two other government entities have suspended Mitsubishi Electric Corp. as a designated contractor because the company has been found to have inflated invoices, the ministry has announced.

The ministry, the Japan Aerospace Exploration Agency (JAXA) and the Cabinet Satellite Intelligence Center made the announcements and suspended the company Friday for unspecified periods. The ministry added that Mitsubishi contacted it to admit the allegations the same day.

The government entities allege the company inflated the number of workers and days required for projects in contracts and inflated invoices sent to the three entities.

The three said they will investigate the company's actions further, including how many projects were padded, the amounts of overestimated payments and other details.

According to the ministry, it received tips around autumn last year that Mitsubishi Electric was billing improperly on contracts.

On Jan. 17, officials of the ministry inspected the Tokyo-based company's Kamakura plant in Kanagawa Prefecture.

The officials confirmed the quoted numbers of workers and project days were higher than actual figures in the production of Type 03 medium range surface-to-air missiles.

In fiscal 2009, the ministry contracted the company to produce the missiles at a cost of about 33.6 billion yen.

The ministry said it is unclear how much the amount was inflated.
The ministry plans to conduct a special investigation into the company starting on Monday to confirm whether similar acts had been made in other contracts.

Mitsubishi Electric provided missiles, radar and other defense equipment to the Self-Defense Forces.

In fiscal 2010, Mitsubishi Electric's ministry contracts were worth about 119.7 billion yen, making it second-largest defense contractor behind Mitsubishi Heavy Industries Ltd. for that fiscal year.

JAXA and the Cabinet Satellite Intelligence Center have also received similar tips, according to the entities. After they asked Mitsubishi Electric to examine the allegations, the company reported there was evidence of wrongdoing, the organizations said.

Since fiscal 2003, JAXA has had more than 1,000 contracts, worth about 320 billion yen, with the company. The contracts included the manufacture of the Kounotori-series unmanned space cargo transfer vehicles for the International Space Station.

Since fiscal 2002, the Cabinet Satellite Intelligence Center has contracted the company for research and development of information-gathering satellites, mainly used to monitor military facilities in North Korea.

Both JAXA and the center said details about the bills were unknown.

A Mitsubishi Electric spokesman said, "It's a fact that the costs of other projects were added to the contracts in question to pad the bills, but we can't comment further as we are still investigating the case."

(Jan. 29, 2012)
Exhibit 60. NASA and JAXA Collaborative Space Enterprise Advancing High Definition Video Processing and Broadcasting From Space, with Holographic Transmission and Projection Capabilities According to Public Knowledge.
"The Primary Goal of the ILO Mission is to Expand Human Understanding of the Cosmos Through Observation from Our Moon."

The ILOA is an interglobal enterprise incorporated in Hawaii as a 501(c)(3) non-profit to help realize the multifunctional ILO -- to advance human knowledge of the Cosmos through observation from our Moon, and to participate in lunar base build-out. The ILOA also since 2008 has co-sponsored with its Space Age Publishing Company affiliate an international series of Galaxy Forums and a Lunar Commercial Communications Workshop.

ILOA Board of Directors

Steve Durst, of Waimea, Hawaii: Founding Director of ILOA is also Editor and Publisher of Space Age Publishing Company. Active advocate and supporter of Space and Lunar Enterprise, and 21st Century Galaxy Education.

Kimo Pihana, of Hilo, Hawaii: Native Hawaiian Kahuna and Cultural Practitioner, former Mauna Kea Ranger

Ziyuan Ouyang, of Beijing China: Chief scientist of the Chinese Lunar Exploration Program (Chang'e program)

Jean-Luc Josset, of Neuchâtel, Switzerland: CEO of Space Exploration Institute. Principle Investigator of AMIE Camera which orbited the Moon aboard the ESA SMART-1 spacecraft.

Maohai Huang, of Beijing, China: Professor of Astrophysics at NAOC. Made 6 trips to Antarctica for Astrophysical research. Assistant of Chief Lunar Scientist Ziyuan Ouyang. PhD Graduate of BU.

Yuki Takahashi, of Berkeley California: Astrophysicist, graduate of UC Berkeley, PhD research conducted on Astronomy from Antarctica. Currently working as a Radio Frequency engineer at SpaceX.

Christian Sallabeger of Toronto, Canada: Vice President & Director of Space Operations at MDA Space Missions.

Shawna Pandya of Edmonton, Canada: Medical student at University of Alberta. ISU graduate. Research interests include space medicine and telemedicine.

Robert Richards of Toronto, Canada: Space entrepreneur and futurist. Cofounder of ISU, Singularity University, SEDS. Co-Founder and CEO of the Google Lunar X Prize Team Moon Express.

Trond Krovel of Konstanz Area, Germany: AOCS and GNC Engineer at EADS Astrium. ISU Graduate. Former President of SSETI.

Viacheslav Ivashkin of Moscow, Russia: Researcher at Keldysh Institute of Applied Mathematics, Participated in Russia’s Luna Program.

Sias Mostert of Cape Town, South Africa: Executive Director of Sunspace and Information Systems Pty Ltd. Associate Professor of Electrical and Electronic Engineering at University of Stellenbosch.

Misuzu Onuki of Tokyo, Japan: Space entrepreneur. Experience with both JAXA and commercial space initiatives. 1st non-USA citizen invited to be a SFF advocate.

Joseph Sulla of Honokaa, Hawaii: Assistant Editor of Space Age Publishing Co.

Click here to find more information about the ILO, ILOA, and Lunar Commercial Communications Workshops at Space Age Publishing Company’s website.
INTERNATIONAL LUNAR OBSERVATORY ASSOCIATION
DOMESTIC NONPROFIT CORPORATION

GENERAL INFO ANNUAL FILINGS OFFICERS OTHER FILINGS BUY AVAILABLE DOCS

General Info

Purchase a Certificate of Good Standing for this business:

- ELECTRONIC $7.50
- PRINTED $7.50

Add to Cart

MASTER NAME
INTERNATIONAL LUNAR OBSERVATORY ASSOCIATION

BUSINESS TYPE
Domestic Nonprofit Corporation

FILE NUMBER
220540 D2

STATUS
Active

PURPOSE
TO EXPAND HUMAN KNOWLEDGE OF THE COSMOS THROUGH OBSERVATION FROM OUR MOON; TO CONDUCT ASTROPHYSICAL RESEARCH AND APPLIED COMMUNICATION FOR THE BENEFIT OF SCIENCE AND EDUCATION AND TO RAISE FUNDS TO MANAGE A LUNAR OBSERVATORY, ITS DATA PROCESSING FACILITIES AND ITS SERVICE MISSION.

PLACE INCORPORATED
Hawaii UNITED STATES

REGISTRATION DATE
Oct 1, 2007

MAILING ADDRESS
65-1230 MAMALAHOA HWY STE D20
KAMUELA, Hawaii 96743
UNITED STATES

TERM
PER

AGENT NAME
PAUL J SULLA

AGENT ADDRESS
2061 KALANIANAOLE AVE
HILO, Hawaii 96720
UNITED STATES

INTERNATIONAL LUNAR OBSERVATORY
ASSOCIATION
DOMESTIC NONPROFIT CORPORATION

Officers

<table>
<thead>
<tr>
<th>NAME</th>
<th>OFFICE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DURST, STEVE</td>
<td>P/1D</td>
<td>Oct 1, 2009</td>
</tr>
<tr>
<td>BOHANNAN, CHARLES</td>
<td>ED/D</td>
<td>Oct 1, 2009</td>
</tr>
<tr>
<td>SULLA, JOSEPH</td>
<td>AS/D</td>
<td>Oct 1, 2009</td>
</tr>
<tr>
<td>PIHANA, JAMES KIMO</td>
<td>D</td>
<td>Oct 1, 2009</td>
</tr>
</tbody>
</table>
Objective

The ILO Founders Meeting statement included a set of six goals to be pursued by ILOA immediately, one of which dictated "Establishing the ILO science and communications requirements and instrumentation." This task is critical in defining the essence of the ILO mission, laying the foundation for detailed design and fabrication of the payload, which comprises the astrophysical and observational instruments as well as the communication systems. The payload is the heart of the mission, and its definition will drive the design of many other aspects of ILO. Furthermore, it is expected that increased clarity of the mission’s specific functionality will be beneficial in terms of generating interest and support for ILO. Thus, the preliminary payload definition was deemed the highest priority engineering need, and was designated as SpaceDev’s next project for ILO.

Method

The Preliminary Payload Definition Study plan included the following steps:

- A. Identify Observation Goals: The ILO is envisioned to have two broad categories of functionality: 1) observation; and 2) communication. Generally, the variability in potential observation instruments is of a higher degree than that of potential communications systems. Also, it is much more likely that particular choices of observation instruments will drive the specification of the communications equipment than vice versa. Therefore, the observation instruments were addressed first, beginning with identification and prioritization of the observation goals. The identification of observation goals included both a literature survey and a survey of the science community.
- B. Select Science Instruments: After identifying and prioritizing the observation goals, the study focused on analyzing options for observation instruments that could be constructed from Commercial Off-The-Shelf (COTS) components, and that would most efficiently meet as many of the high priority goals as possible considering the mission constraints.
- C. Identify Communications Goals: The communications systems should support maintenance of spacecraft health, operation of observation instruments, delivery to ground systems of observation data, and commercial communication activities.
- D. Select Communications Systems: Potential communications systems were analyzed, again aiming for low-cost COTS-based solutions.
- E. Select Conceptual Payload Physical Configuration: The physical packaging of the hardware that makes up the ILO payload is an important consideration. The instruments and antennas have important requirements for range of motion and pointing precision, and also must not physically interfere with each other. Meanwhile, the design must strive for low mass and compact packaging, while exhibiting high reliability and tolerance to stresses such as launch and landing loads.
- F. Develop Requirements: Ultimately, the ILO mission needs a requirements database to guide and justify choices in the design and manufacture of the various hardware and software systems. These requirements will evolve through an iterative process throughout the mission development, but it is helpful to begin laying them out early, so that the various systems are aligned.

designed and built in a coherent manner. The study delivered the first iteration of the requirements database for the ILO payload.

Results

The survey of the scientific community revealed clear interest across the full spectra of investigation categories and observed wavelengths. There is a particular enthusiasm for sky surveys, motivated by the profound and unexpected discoveries that inevitably emerge from such efforts. In terms of wavelengths, the preference is somewhat concentrated in the mid-regions from sub-millimeter (sub-mm) through Ultra-violet (UV).

The literature survey uncovered many novel proposals for Moon-based astronomy, but most require very large, complex missions beyond the planned scope of the ILO, in terms of both cost and development time. However, again, it is clear that while there are some skeptics, there are many proponents of Moon-based astronomy, and there are a number of distinct advantages of the Moon over Earth and even space (e.g. Earth orbit), as a location from which to make astrophysical observations.

After substantial research and trade studies, SpaceDev presented ILOA with a variety of options regarding the architecture of the ILO payload. The final recommendation was that the primary instrument be a 14-inch aperture telescope to observe UV, Visible and Infra-red (IR), with full high precision pointing and tracking capability. Promising secondary instruments were identified as: UV / Visible spectrograph; X-Ray imager; Very Low Frequency (VLF) tri-pole sensor. Recommended communications equipment included: a two-way local S-band system (for rovers, Moon-orbiting spacecraft, etc.) with a fixed omni-directional antenna; a dedicated two-way Earth comm Ku-band system with a 0.8 meter dish having sufficient pointing capability to track Earth, and achieving a downlink data rate of 1 Mbps in the baseline scenario.

Conclusion

The recommended design would take good advantage of SpaceDev’s general philosophy, leveraging COTS components to achieve high-value performance at a modest cost. The logical next step in the ILO payload development process would be a detailed system design to the Preliminary Design Review (PDR) level.
Lunar Enterprise Daily
"Tomorrow’s News Today"

Year 6 Number 44
Monday / 6 March 2006

Highlights

★ NASA human Moon missions / VSE focus undercut USA competitive edge, says science community; pushing for more robotic missions
★ NASA must prepare for "a variety of futures," says Langley RC senior engineer Patrick Troutman; flexibility, versatility keys to sustainability
★ '4th Responsive Space Conf' on 24-27 Apr at LAX Westin Hotel CA; 'Improving Space Operations Workshop' follows on 27-28 Apr
★ Wisconsin state Senate creates WI Aerospace Authority; 9-member board to develop, operate spaceport programs such as Sheboygan
★ "37th Lunar & Planetary Science Conf" on 13-17 Mar in League City TX; sponsored by NASA, JSC, LPI
★ '44th AAS Robert H Goddard Memorial Symposium' on 14-15 Mar at Greenbelt Marriott in MD; theme - '80 Years After RG's 1st Rocket Flight: Engineers, Scientists and the Vision'

Global

★ India, US advance Moon, space cooperation during US Pres Bush's India visit last week; agreement on USA Chandrayaan-1 payloads
★ NASA-German Aerospace Center GRACE experiment studying shrinking of Antarctic ice sheets; significant decrease from 2002-05
★ Russia US$122M Air Launch project receives approval of Roscosmos; Ruslan aircraft could take off from Indonesia island of Biak
★ 57th International Astronautical Congress' in Valencia, Spain on 2-6 Oct; deadline for abstracts is 10 Mar
★ NORCAT 'Planetary & Terrestrial Mining Sciences Symposium' in Sudbury, Canada on 4-7 Jun; lunar

Features

ISS Partners Endorse New Station Configuration, Assembly Sequence, 6-Person Crew in 2009. Station agency heads reaffirm their commitment to meet mutual obligations and complete the assembly of the orbiting outpost by 2010 . . .

NASA Ames Lunar Legacy Bolsters RLEP Management. It was no surprise when NASA announced late last year that management of the Robotic Lunar Exploration Program (RLEP) would go to Ames Research Center . . .

JAXA Astronauts (TR) To Explore Moon (Shown With Japan Myth "Rabbits") By 2025; Effort Surely Boosted By Recent H 2A (BR) Successes, Strong Tourism Led By Daisuke Enomoto (BC) Who Visits ISS in Oct

NASA Ames Lunar Legacy Bolsters RLEP Management. It was no surprise when NASA announced late last year that management of the Robotic Lunar Exploration Program (RLEP) would go to Ames Research Center . . .

Exhibit 63(B). JAXA Promotion by SULLA et. al’s Space Age Publishing Co. Promoting NASA and International Lunar Intelligence Gathering Enterprises.

Exhibits pg. 522